
Neighbours and Kinsmen: Hateful Users
Detection with Graph Neural Network

Shu Li1,2,3,4�[000−0002−7445−7455], Nayyar A. Zaidi1[0000−0003−4024−2517],
Qingyun Liu2,3, Gang Li5[0000−0003−1583−641X]

1 School of Information Technology, Deakin University, Geelong, VIC 3216, Australia
{shul, nayyar.zaidi}@deakin.edu.au

2 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
3 National Engineering Laboratory of Information Security Technologies,Beijing, China

liuqingyun@iie.ac.cn
4 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
5 Centre for Cyber Security Research and Innovation, Deakin University, Geelong, VIC

3216, Australia
gang.li@deakin.edu.au

Abstract. With a massive rise of user-generated web content on social
media, the amount of hate speech is also increasing. Countering online
hate speech is a critical yet challenging task. Previous research has pri-
marily focused on hateful content detection. In this study, we shift the
attention from hateful content detection towards hateful users detection.
Note, hateful users detection can benefit from users’ tweets, profiles, social
relationships, but the real benefit is that it can be aided by Graph Neural
Networks (GNN). Typical Graph Neural Networks, such as GraphSAGE,
only considers local neighbourhood information and samples the neigh-
bourhood uniformly, thus they lack the ability to capture long-range
relationships or to differentiate neighbours of a node. In this paper, we
present HateGNN – a GNN-based method to address these two limitations.
Our proposed method relies on the notion of latent neighbourhood, as well
as systematic sampling of the neighbourhood nodes. The experimental
results demonstrate that HateGNN outperforms state-of-the-art baselines
in the task of detecting hateful users. We also provide a detailed analysis
to demonstrate the efficacy of the proposed method.

Keywords: Hateful users; GNNs; Biased Sampling; Latent connections

1 Introduction

The proliferation of social media enables people to freely express their opinions
online. However, it also becomes the breeding ground of hate speech that is
described as abusive language, cyberbullying, discrimination, racism, sexism,
threats, or toxicity [2]. The stark increase of hateful content on the internet has
resulted in the emergence of conflict and hate [9]. Thus, hate speech classification
has become a topic of growing interest for industry and academia. Over the

2 S. Li et al.

past few years, a variety of models and methods on hate speech detection
formulated it as a text classification task [13]. Current methods exploit the text
representation as character n-grams or TF-IDF, and then resort to machine
learning techniques, such as Logistic Regression, SVM, Decision Trees, and
Random Forests. Recently, deep learning methods, such as Recurrent Neural
Networks [14,10] and Convolutional Neural Networks [3], have been popularized
in natural language processing to analyse online content.

Despite existing efforts in this area, hate speech detection remains a challenge.
First, the state-of-the-art models oversimplify the problem, such as considering
only tweets with hate-related words [1]. These methods rely entirely on textual
(i.e., lexical and semantic) features [8], and are not aware of user and community
information. Second, the state-of-the-art hate speech classifiers are vulnerable
to extremely simple, model-agnostic attacks [7] 6. These realistic attacks reduce
the detection recall by nearly 50% in some cases. Therefore, hate speech classi-
fiers depending only on text detection are not robust against adversaries who
deliberately mislead the classifiers.

Fortunately, the textual contents are not the only information that can be
used to study hate speech in the social network. There is information that is
often linked to a profile representing a person or an organization. Investigating
such information presents plenty of opportunities to explore a richer feature
space that can be helpful in identifying online hate speech. Moreover, it is more
natural that users’ profile is considered when detecting hate speech, rather than
just considering isolated tweets. In addition, directly identifying (and controlling)
hateful users who are intentionally propagating the hate speech is an important
and effective measure for countering online hate speech. Therefore, in this study
we shift the attention from hate speech toward hateful users.

Since hateful users detection can benefit from users’ tweets, profiles and social
relationships – it can be aided by Graph Neural Networks (GNNs). Specifically,
users in the social network are nodes in the graph and the social relationship
can be regarded as edges. Each node contains abundant property information
such as user’s profile, user’s tweets. GNNs can be naturally applied to such
node classification task by employing deep neural networks to aggregate feature
information of neighbouring nodes. However, detecting hateful users based on
GNNs has three main challenges.

– It is likely to be ineffective to aggregate neighbouring information for nodes
that have no or too few relations with other nodes in the graph.

– A neighbourhood of a node is defined as the set of all neighbours which are
one or more hops away. Typically, only features of the neighbourhood are
aggregated. We conjecture that there might be nodes which could be very
similar to the node in question, but are not in the neighbourhood of the
node. The existing methods are not able to aggregate such high-similarity
(non-neighbourhood) nodes.

6 The model-agnostic attacks include diluting the hateful signal, obfuscating hateful
tokens through character level perturbations, or injecting non-hate distractor.

Title Suppressed Due to Excessive Length 3

– The current GNNs, especially the spatial-based methods like GraphSAGE [4],
sample all neighbours equally when aggregating their information. It does not
consider the fact that different neighbours may influence the node differently.

To address the limitations above, we propose a framework – HateGNN, for
hateful user detection in the social network. HateGNN has following salient features:

– To address the first and second challenge described above, apart from the
existing (explicit) social graph, we create a latent graph based on the node
property information. This will help drastically for nodes which have no or
too few neighbours. Moreover, the latent graph has the ability to capture the
important features from distant but informative nodes.

– To address the third challenge, a bias strategy is applied to sample neighbours
(not only immediate neighbours but latent neighbours) for differentiating the
influences of the neighbours. We have proposed a sampling strategy to help
choose the most informative features.

– Once the neighbours are selected, we aggregate the social and latent neigh-
bourhoods to compute the final node embeddings.

We claim that the final embeddings obtained with HateGNN are much powerful
than existing state-of-the-art methods. We back-up this claim by conducting
experiments on two public datasets of hate speech. The results demonstrate the
superior performance of HateGNN over state-of-the-art baselines. Moreover, we
separately validate the efficacy of the salient features of HateGNN. We also provide
detailed analyses on how various parameters (e.g., the size of sampling neighbours
set, the similarity, the node properties) impact the model performance.

2 Related Work

Hate speech detection has been a popular research topic for decades. However,
most of the existing literature focused on hate speech detection towards tex-
tual contents [13], and they attempted to adopt various typical classification
algorithms [14,10,3]. Research on hateful users is still relatively under explored.
The research of [11] characterized the hateful users on Twitter, and it showed
that hateful users differ from normal ones in terms of their word usage, activity
patterns and network structure. However, the work of [11] mainly focused on the
analysis of hateful users rather than the detection model.

GNNs have been widely used to learn node embeddings. GNNs encode nodes
into vectors by aggregating feature information from node’s local neighbourhood
via neural networks. To reduce the computational costs and improve performance,
several recent studies have attempted to use different ways of neighbourhood
aggregation. Graph Convolutional Network (GCN) uses a graph convolutional
layer to encapsulate each node’s hidden representation by summing “message”
from all one-hop neighbours [6]. Graph Attention Network (GAT) [12] assigns
different importance to different neighbours by utilising self-attention mechanism,
and then combines their impacts to generate node embeddings. As a general

4 S. Li et al.

inductive framework, GraphSAGE [4] is able to efficiently generate node embeddings
for previously unseen data by sampling and aggregating features from a node’s
local neighbourhood. However, existing neighbourhood aggregation methods are
not able to aggregate nodes that are similar but are far away from each other
(i.e., not in immediate neighbourhood of each other). Moreover, these methods
overlook the fact that different neighbours can influence a node in different ways.
As discussed, we will address these issues with our proposed HateGNN method.

3 Problem Definition

In this section, we introduce the notions of social graph and latent graph, and then
formally define the problem of Hateful Users Detection with Graph Neural Network
(HateGNN). The social network, such as Twitter, is represented by a huge graph, in
which every user is represented by a node and the follower/followee relationships
between nodes are represented by an edge. Apart from the follower-followee
network, the tweeting/retweeting network, representing the flow of information,
can also be represented by a retweet graph, with users as the nodes and edges
implying that one user has retweeted the post of another user. We define a social
graph as:

Definition 1 (Social Graph). A social graph is graph that can be created
based on existing (explicit) connections between entities, and is parametrised as:
Go = (V,EGo ,P), where V are the nodes, EGo correspond to the relationships of
nodes, and P denotes the properties of nodes.

The social graph defined above is fundamental to describe the relationship
of the users, in which the node representation can be efficiently improved by
aggregating features from its neighbours. However, it is unable to capture the
long-distance dependencies among nodes with similar properties or topology
structures (e.g. core, betweenness, and community bridges) when they are far
away in the social graph. In order to solve the above problems, we propose a
latent graph as:

Definition 2 (Latent Graph). A latent graph is parametrised as: Gl = (V,EGl ,
P, λGl) with nodes V and edges EGl , where the edges between two nodes u, v ∈ V
denotes their similarity exceeds a certain threshold λGl . P represents the property
of nodes as the same meaning in the Go.

The problem of HateGNN is then formulated as follows. Given a set of users
and their tweets in the social network, HateGNN aims to design a model M to
learn the embedding of user, denoted as xv, and the function F : xv −→ Σ that
assigns the label information to users, so as to detect whether one user is hateful
or not in the social network.

Title Suppressed Due to Excessive Length 5

Fig. 1: Pictorial illustration of the of HateGNN framework.

4 The HateGNN framework

In this section, we will describe our proposed HateGNN method, and illustrate it
in Figure 1. First, the social graph Go is obtained 7, where the nodes are the users,
and each node has its property (e.g. users’ tweets). Second, when the similarity
of property vector between two nodes exceeds the threshold λGl , they are linked
by a latent edge. These latent edges and the corresponding nodes form the
latent graph Gl. Third, a biased neighbourhood sampling strategy is implemented.
Neighbours (both social and latent) that are more similar to the processed node,
have higher priority to be sampled until a fixed-size set of neighbours Ns

(v) is
obtained. Finally, after choosing neighbours Ns

(v), we aggregate their property
information to obtain node embedding xv by multiplying the weight matrices
that are trained with neural networks.

4.1 Latent Graph Construction

Let us discuss the creation of latent graph. Note, for hateful user detection,
the properties of node v ∈ V, could be content-related, activity-related, or
sentiment-related, etc. In addition, the topology structure for each node, could
also be considered as a property 8. The properties used in this work are detailed
in Table 1. We obtain vector representation for each property (e.g. one-hot and
labels encoders, GloVe for word embedding) and get the initial feature of node
v ∈ V, denoted as zv. For u, v ∈ V, their similarity is defined based on as:

S(v, u) = PearsonSimilarity(zv, zu). (1)
7 The follower-followee or tweeting/retweeting relationship can be obtained conveniently

by using Application Programming Interface (API) provided by the social network.
8 The topology structure refers to centrality measurements for v in Go.

6 S. Li et al.

Table 1: List of various nodes’ properties used in HateGNN.
Property Type Property values

Content-related property users’ tweets.
Activity-related property the number of tweets, retweet, follower, followees,

favourites, hashtags, quote, URLs, mentions per tweet
in average, and average and median time interval
between tweets.

Sentiment-related property sentiment of tweets, and bad-words usage.
Structure-related property betweenness, eigenvector, indegree, outdegree, and

the above property for the 1-neighbourhood of a user.

When the similarity between two nodes exceeds the threshold λGl , they are linked
by a latent edge, which finally creates a latent graph Gl.

4.2 Biased Sampling Neighbourhood

When the graph have high-degree nodes (i.e., the nodes have a large number
of neighbours), considering all neighbours for aggregation is usually inefficient
and unnecessary [5]. Given that a node’s neighbours in graph have no natural
ordering (e.g., sentences, images), GraphSAGE [4] proposed to uniformly sample
a fixed-size set of neighbours, which outperforms strong GNNs models. Our
proposed framework HateGNN improves GraphSAGE by deriving a set of sampled
neighbours based on their similarity. The intuition is that similar neighbours
(similar in any type of properties listed in Table 1) could consolidate and enhance
the node embedding results.

Algorithm 1 describes the overall procedure of our sampling process. The
operations from step 4 to 12 calculate the node similarity to sample neighbours.
Then, for each node v ∈ V, it aggregates the representations of its sampled
neighbourhood, {hk−1

u ,∀u ∈ Ns
(v)}, and then concatenates the node’s current

representation, hk−1
v . This concatenated vector is fed through a fully connected

layer with non-linear activation function σ. Finally, we get the final representations
output at depth K, denoted as xv = hk

v ,∀v ∈ V. Specifically, the similarity
threshold λGl in the latent graph could be set equal to the bias parameter η in
the HateGNN model.

4.3 Multi-modality of Neighbourhood Aggregation

The neighbourhoods N(v) =
{
No(v), Nl(v)

}
of node v includes its neighbourhood

in both the social graph and the latent graph. The social-neighbourhood No(v)
consists of the set of v’s adjacent nodes in the social graph Go, and the latent-
neighbourhood Nl(v) are those whose similarity to node v are higher than a
parameter λGl . In aggregation process, we combine the social neighbourhood and
the latent neighbourhood to generate the node embedding. The motivation is that
different types of neighbours will make different contributions to the final node

Title Suppressed Due to Excessive Length 7

Algorithm 1 HateGNN using Biased Sampling Neighbourhood
Input: Graph G = (V,E,P); input features {zv, ∀v ∈ V}; depth K;

Weight matrices Wk, ∀k ∈ {1...,K}; non-linearity σ;
Mean aggregator functions AGGREGATEmean

k , ∀k ∈ {1...,K} ;
Neighbourhood N(v);
The sampled neighbourhood Ns

(v), the size |Ns
(v)|;

The size of neighbours to be sampled β; The bias parameter η;
Output: Vector representations xv for all v ∈ V;
1: h0

v ← zv, ∀v ∈ V;
2: for {k = 1...K} do
3: for v ∈ V do
4: for u ∈ N(v) do
5: if |Ns

(v)|≤ β then
6: if S(v, u) ≥ η using Equation (1) then
7: Ns

(v) ← u ;
8: end if
9: else

10: break;
11: end if
12: end for
13: hk

Ns
(v)
← AGGREGATEmean

k

(
{hk−1

u , ∀u ∈ Ns
(v)}

)
;

14: hk
v ← σ

(
Wk· CONCAT (hk−1

v ,hk
Ns

(v)
)
)

;
15: end for
16: hk

v ← hk
v/||hk

v ||2, ∀v ∈ V ;
17: end for
18: xv ← hK

v , ∀v ∈ V;

representation. For the social-neighbourhood, it denotes the effect of user’ social
nature. In comparison to this explicit relationship, the latent-neighbourhood
indicates the long-range dependencies with the node, which is invisible and
cannot be captured directly. Thus the step 13 in HateGNN could be updated
with Equation (2), in which Ns

o(v)
and Ns

l(v)
are the sampled neighbours from the

social graph and the latent graph, respectively, that is:

hk
Ns

(v)
← AGGREGATEmean

k

({
hk−1
u ,∀u ∈ {Ns

o(v)
∪Ns

l(v)
}
})

. (2)

4.4 Model Training
HateGNN is not attempting to learn the embedding results for all nodes in a graph,
but to learn a mapping that generates embedding for each node. Depending on
the dataset with node labels for hateful user detection, we train the model in a
semi-supervised learning paradigm. With the labelled nodes, we train HateGNN
by minimizing the cross entropy via back-propagation and gradient descent. thus,
the loss function is calculated as:

L =
∑
v∈V

(
yvlog pv + (1− yv) log(1− pv)

)
, where pv = σ(wTxv + b).

8 S. Li et al.

Table 2: Datasets used in the Experiments
Data Users Edges

HateUser5K 100,386 retweet edges: 2,286,592
Tweet9K 1,448 follower-followee edges: 3,471

5 Experiments

In this section, we conduct an empirical evaluation of our proposed method HateGNN,
with the aim of answering the following research questions:

RQ1: How does HateGNN perform vs. the baselines for hateful users detection?
RQ2: How do the components of HateGNN (latent neighbourhood, bias-sampling,

multi-modality of neighbourhood aggregation) affect the model performance?
RQ3: How do various parameters, e.g., the size of sampling neighbours set, the

similarity, the node properties, impact performance of the model?

We compared HateGNN with five baselines, including AdaBoost, GradBoost,
GCN [6], GAT [12] and GraphSAGE [4], and we evaluated their performances using
two widely-used datasets in the hate speech domain, for which the statistics are
summarized in Table 2.

HateUser5K contains a network of 100k users, out of which about 5k were
annotated to be either hateful or not. Hateful users are those who endorse any
type of hate speech (e.g., abusive language, discrimination, racism). Each user
has several activity-related, content-related, and structure-related properties, as
shown in Table 1. If one user has retweeted another users, such retweet connection
is represented as the social graph in this dataset.

Tweet9K is the dataset of online tweets, which contains 16, 907 tweet IDs and
their labels. It was collected from Twitter by [13], and was annotated as sexism,
racism, both or neither by recruited experts. By using the Tweepy library, we
retrieved the tweets and also collected the follower-followee information for the
users as the edges in the social graph. Since some users have now been suspended,
only 9, 755 tweets of 1, 448 users were acquired.

5.1 Comparisons with Baselines (RQ1)

We compare our model with other baselines (AdaBoost, GradBoost, GCN, GAT,
GraphSAGE) in Table 3, and used Accuracy, F1-score, Area under the ROC
Curve (AUC), to evaluate the performance of classification. It is noteworthy that
HateGNN outperforms all baselines on both datasets. In terms of accuracy, our
model leads to a performance improvement of over 5% on HateUser5K, and over
2% on Tweet9K, which is very encouraging.

5.2 Performance Analysis (RQ2)

To answer RQ2, we design experiments to evaluate the efficacy of each component
of HateGNN. The performance is reported in Table 4, where the best results are
highlighted in bold.

https://www.kaggle.com/manoelribeiro/hateful-users-on-twitter
https://github.com/ZeerakW/hatespeech

Title Suppressed Due to Excessive Length 9

Table 3: Comparison of HateGNN with baselines and state-of-the art GraphSage.
Dataset Methods Accuracy F1-score AUC

HateUser5K

AdaBoost 0.6894 ± 0.0132 0.3724 ± 0.0137 0.8499 ± 0.0182
GradBoost 0.8389 ± 0.0104 0.5043 ± 0.0217 0.8768 ± 0.0086

GCN 0.8543 ± 0.0254 0.5397 ± 0.0127 0.8716 ± 0.0376
GAT 0.8643 ± 0.0302 0.4578 ± 0.0212 0.7900 ± 0.0197

GraphSAGE 0.8904 ± 0.0372 0.6355 ± 0.0880 0.9392 ± 0.0334
HateGNN 0.9509 ± 0.0354 0.7987 ± 0.1385 0.9649 ± 0.0442

Tweet9K

AdaBoost 0.4475 ± 0.0168 0.4891 ± 0.0112 0.7567 ± 0.0290
GradBoost 0.7342 ± 0.0280 0.5919 ± 0.0404 0.7813 ± 0.0376

GCN 0.6897 ± 0.1880 0.5048 ± 0.0314 0.7003 ± 0.0323
GAT 0.7023 ± 0.0820 0.4991 ± 0.0124 0.6813 ± 0.0536

GraphSAGE 0.8598 ± 0.0974 0.7889 ± 0.1302 0.9243 ± 0.0694
HateGNN 0.8715 ± 0.1052 0.8062 ± 0.1434 0.9244 ± 0.0843

Table 4: The effects of each component of HateGNN.
Dataset Graph Methods Accuracy F1-score AUC

HateUser5K
Social Graph GraphSAGE 0.8922 ± 0.0339 0.6399 ± 0.0789 0.9396 ± 0.0346

HateGNN 0.9276 ± 0.0364 0.7264 ± 0.1196 0.9509 ± 0.0437

Latent Graph GraphSAGE 0.8892 ± 0.0341 0.6337 ± 0.0787 0.9398 ± 0.0326
HateGNN 0.9237 ± 0.0408 0.7302 ± 0.1252 0.9570 ± 0.0336

Social + Latent GraphSAGE 0.9008 ± 0.0356 0.6652 ± 0.0886 0.9458 ± 0.0339
HateGNN 0.9260 ± 0.0322 0.7204 ± 0.1031 0.9548 ± 0.0359

Tweet9K
Social Graph GraphSAGE 0.8345 ± 0.1128 0.7812 ± 0.1362 0.9005 ± 0.0959

HateGNN 0.8429 ± 0.1118 0.7856 ± 0.1439 0.8938 ± 0.1044

Latent Graph GraphSAGE 0.8598 ± 0.0974 0.7889 ± 0.1302 0.9243 ± 0.0694
HateGNN 0.8626 ± 0.0974 0.7926 ± 0.1328 0.9205 ± 0.0825

Social + Latent GraphSAGE 0.8660 ± 0.0970 0.7974 ± 0.1322 0.9273 ± 0.0734
HateGNN 0.8715 ± 0.1052 0.8062 ± 0.1434 0.9244 ± 0.0843

The Efficacy of the Latent Neighbourhood. It can be seen from Table 4
by focusing on results reported individually on social graph and latent graph –
that, the performance on latent graph is comparable with that on social graph.
It is encouraging to see that the performance on latent graph is even better than
that on the social graph of dataset Tweet9K, thus, demonstrating the efficacy of
the latent connections for this problem. Please note that the individual reported
results on social graph and latent graph, do not include biased sampling of the
neighbours.

The Efficacy of the Biased Sampling Strategy. We conducted the exper-
iments on social graph, latent graph and the (social+latent) graph, respectively.
The results in Table 4 show that HateGNN generally outperforms GraphSAGE. This
confirms that the biased sampling strategy helps learn the node embedding from
the neighbours.

The Effect of Multi-modality of Neighbourhood Aggregation. Ac-
cording to Table 4, for HateUser5K dataset, the performances of HateGNN on
the (social+latent) graph is slightly superior than the results on latent graph in
Accuracy and on social graph in AUC. In terms of Tweet9K, HateGNN performs
better on the (social+latent) graph than on individually latent graph or social
graph. Moreover, GraphSAGE trained on the combination of the social and latent
graph has a better performance than GraphSAGE on either on HateUser5K or
Tweet9K, demonstrating the efficacy of multi-modality neighbourhood.

10 S. Li et al.

Table 5: The comparative analysis of the sampling size.
Methods Sampling size Accuracy F1-score AUC

GraphSAGE

S1=5; S2=1 0.8904 ± 0.0372 0.6355 ± 0.0880 0.9392 ± 0.0334
S1=10; S2=5 0.8944 ± 0.0363 0.6448 ± 0.0875 0.9418 ± 0.035
S1=25; S2=10 0.8936 ± 0.0365 0.6423 ± 0.0890 0.9427 ± 0.0340
S1=100; S2=50 0.8968 ± 0.0357 0.6516 ± 0.0879 0.9440 ± 0.0349
S1=500; S2=100 0.8972 ± 0.03466 0.6493 ± 0.0876 0.9447 ± 0.0344

HateGNN

S1=5; S2=1 0.9260 ± 0.0322 0.7204 ± 0.1031 0.9548 ± 0.0359
S1=10; S2=5 0.9155 ± 0.0348 0.6983 ± 0.0970 0.9500 ± 0.0355
S1=25; S2=10 0.9103 ± 0.0355 0.6844 ± 0.0980 0.9488 ± 0.0359
S1=100; S2=50 0.9063 ± 0.0296 0.6729 ± 0.0768 0.9496 ± 0.0330
S1=500; S2=100 0.9016 ± 0.0344 0.6599 ± 0.0889 0.9474 ± 0.0334

5.3 Parameter Analysis (RQ3)

How do various parameters, e.g., the size of sampling neighbours set, the similarity
measure and the node properties impact the model performance? To answer
RQ3, we discuss these questions in this section. Due to space constraints, we
only present results on HateUser5K dataset, however, a similar pattern of results
was observed on Tweet9K.

The Setting of the Sampling Size. In this section, we probe the influence
of the size of sampling neighbours set on the model performance. [4] found that
setting the depth of neighbourhood K = 2 provided a consistent boost in accuracy.
Thus, we set the default value for K. Because of the memory limit and the run-
time requirements, we only adjust the neighbourhood sample sizes S1 and S2 from
{5, 1} to {500, 100}. The results are presented in Table 5. For random sampling of
GraphSAGE, increasing the neighbourhood sample size basically obtained no more
than 1% performance improvement. For biased sampling strategy of HateGNN, a
small sampling size achieved the best performance, showing that learning node
embedding from a small number of sampling neighbours is able to maintain
promising results. It is encouraging to see that a small sample size for HateGNN
leads to much better accuracy that was achieved with GraphSage with much
larger sample.

The Similarity Measure. We have to use some forms of similarity measure to
calculate the similarity among nodes, and then conduct latent graph construction
and biased sampling. In this experiment, we compare two similarity measures,
namely Spearman and Pearson, as presented in Table 6. Compared with random
sampling, HateGNN model trained with Spearman or Pearson similarity measures,
has much better performance. Secondly, Pearson-based similarity measure leads
to better performance than Spearman. This is the reason, we present Pearson
as the default option, and all the results presented in this work are based on
Pearson measure.

The Effect of Similarity and Dissimilarity. In Section 5.2, we demonstrated
the effectiveness of biased sampling. Here we discuss why we can not do biased

Title Suppressed Due to Excessive Length 11

Table 6: The impact of various similarity approaches.
Neighbourhood Similarity Accuracy F1-score AUC

Social Neighbourhood
Random 0.8922 ± 0.0339 0.6399 ± 0.0789 0.9396 ± 0.0346

Spearman 0.9163 ± 0.0335 0.7009 ± 0.0961 0.9505 ± 0.0361
Pearson 0.9276 ± 0.0364 0.7264 ± 0.1196 0.9509 ± 0.0437

Latent Neighbourhood
Random 0.8892 ± 0.0341 0.6337 ± 0.0787 0.9398 ± 0.0326

Spearman 0.9139 ± 0.0360 0.6965 ± 0.1063 0.9512 ± 0.0373
Pearson 0.9237 ± 0.0408 0.7302 ± 0.1252 0.9570 ± 0.0336

Social + Latent
Random 0.8904 ± 0.0372 0.6355 ± 0.0880 0.9392 ± 0.0334

Spearman 0.9177 ± 0.0349 0.6994 ± 0.1059 0.9509 ± 0.0377
Pearson 0.9260 ± 0.0322 0.7204 ± 0.1031 0.9548 ± 0.0359

Table 7: The effect of the use of similarity or dissimilarity measure.
Bias Accuracy F1-score AUC

Dissimilarity 0.8853 ± 0.0412 0.6313 ± 0.0951 0.9333 ± 0.0327
Random 0.8904 ± 0.0372 0.6355 ± 0.0880 0.9392 ± 0.0334

Similarity 0.9260 ± 0.0322 0.7204 ± 0.1031 0.9548 ± 0.0359

sampling with dissimilarity measures? In this experiment, we compared HateGNN
model performance by biased sampling neighbours according to similarity and
dissimilarity (Table 7). Dissimilarity-based sampling strategy is unable to achieve
further performance improvement, even worse than GraphSAGE with random
sampling. It is demonstrated that nodes embedding cannot benefit from the
dissimilar neighbours in this task.

The Impacts of the Nodes’ Properties. As collecting content-related and
activity-related properties are relatively easy (i.e. only the user itself is involved),
we have only utilized these two properties in this study. Here, we will explore the
impact of more nodes’ properties on HateGNN model. It can be seen from Table 8,
that by adding activity-related property, the relative improvements are no more
than 1% in three evaluation metrics. But when using all properties, HateGNN
model achieves further performance improvement, with the relative improvements
are about 3%, 9%, 2% in Accuracy, F1-score, AUC, respectively. This shows
the benefit of utilizing more nodes’ properties in the model for this task.

6 Conclusions

In this paper, we develop a sophisticated framework for hateful users detection in
the social network – HateGNN, which not only exploits the explicit social graph,
but also builds a latent graph. In addition, it has an effective neighbour sampling
technique that can choose the most informative features from neighbours. On
two standard hate-speech detection datasets, the proposed model leads to better
performance than existing state of the art methods such as GraphSAGE, etc.
In the future, we will investigate the application of HateGNN on even larger
datasets, together with biased sampling weight learning based on multi-view
node properties. It is important to note that formulation of HateGNN is general,

12 S. Li et al.

Table 8: The impact of nodes’ properties
Property Accuracy F1-score AUC

Content (300d) 0.9195 ± 0.0389 0.7084 ± 0.1204 0.9480 ± 0.0438
Content+Activity(320d) 0.9260 ± 0.0322 0.7204 ± 0.1031 0.9548 ± 0.0359

Content+Activity+
Sentiment+Structure(1028d) 0.9509 ± 0.0354 0.7987 ± 0.1385 0.9649 ± 0.0442

and though we have constrained ourselves to hate-speech detection problem in
this work, the application of HateGNN to general graphs is straight-forward and
is currently under-progress.

Acknowledgment
This work is supported by Scientific Research Guiding Project (Grant No.
Y9W0013401), Key Technical Talents Project of CAS (Grant No. Y8YY041101)
and National Natural Science Fund of China (Project No. 71871090).

References
1. Arango, A., Pérez, J., Poblete, B.: Hate Speech Detection is Not as Easy as You

May Think: A Closer Look at Model Validation. In: COLING (2019)
2. Fortuna, P., Nunes, S.: A Survey on Automatic Detection of Hate Speech in Text.

ACM Computing Surveys 51(4), 1–30 (2018)
3. Georgakopoulos, S.V., Tasoulis, S.K., Vrahatis, A.G., Plagianakos, V.P.: Convolu-

tional neural networks for toxic comment classification. In: Proceedings of the 10th
Hellenic Conference on Artificial Intelligence, SETN (2018)

4. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS. pp. 1024–1034 (2017)

5. Hou, Y., Chen, H., Li, C., Cheng, J., Yang, M.C.: A Representation Learning
Framework for Property Graphs. In: SIGKDD. pp. 65–73. ACM (Jul 2019)

6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: ICLR (2016)

7. Kurita, K., Belova, A., Anastasopoulos, A.: Towards robust toxic content classifica-
tion. CoRR (2019)

8. Mishra, P., Del Tredici, M., Yannakoudakis, H., Shutova, E.: Author Profiling for
Abuse Detection. In: COLING (2018)

9. Petulla, S., Kupperman, T., Schneider, J.: Hate Crimes Spurned By Group-Based
Hatred (2018)

10. Pitsilis, G.K., andHelge Langseth, H.R.: Effective hate-speech detection in twitter
data using recurrent neural networks. Appl. Intell. 48(12), 4730–4742 (2018)

11. Ribeiro, M.H., Calais, P.H., Santos, Y.A., Almeida, V.A., Meira Jr, W.: Character-
izing and detecting hateful users on twitter. In: ICWSM (2018)

12. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph
attention networks. In: ICLR (2018)

13. Waseem, Z., Hovy, D.: Hateful symbols or hateful people? predictive features for
hate speech detection on twitter. In: SRW@HLT-NAACL. pp. 88–93 (2016)

14. Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., Xu, B.: Text classification improved by
integrating bidirectional LSTM with two-dimensional max pooling. In: COLING
(2016)

	Neighbours and Kinsmen: Hateful Users Detection with Graph Neural Network

