
Springer Nature 2021 LATEX template

Improving Neural Network’s Robustness on

Tabular Data with D-Layers

Haiyang Xia1†, Nayyar Zaidi2*†, Yishuo Zhang2 and Gang Li2

1Research School of Management, Australian National
University, Canberra, 2601, ACT, Australia.

2*Centre for Cyber Resilience and Trust (CREST), Deakin
University, Geelong, 3216, VIC, Australia.

*Corresponding author(s). E-mail(s): nayyar.zaidi@deakin.edu.au;
Contributing authors: haiyang.xia@anu.edu.au;

chris.zhang@deakin.edu.au; gang.li@deakin.edu.au;
†These authors contributed equally to this work.

Abstract

Artificial Neural Networks (ANN) are widely used machine learning
models. Their widespread use has attracted a lot of interest in their
robustness. Many studies show that ANN’s performance can be highly
vulnerable to input manipulation such as adversarial attacks and covari-
ate drift. Therefore, various techniques that focus on improving ANN’s
robustness have been proposed in the last few years. However, most
of these works have mostly focused on image data. In this paper, we
investigate the role of discretization in improving ANN’s robustness on
tabular datasets. Two custom ANN layers – D1-Layer and D2-Layer

(collectively called D-Layers) are proposed. The two layers integrate
discretization during the training phase to improve ANN’s ability to
defend against adversarial attacks. Additionally, D2-Layer integrates
dynamic discretization during testing phase as well, to provide a uni-
fied strategy to handle adversarial attacks and covariate drift. The
experimental results on 24 publicly available datasets show that our pro-
posed D-Layers add much-needed robustness to ANN for tabular datasets.

Keywords: Robustness, Covariate Drift, Adversarial Attack, Tabular Data,
Discretization

1

Springer Nature 2021 LATEX template

2 Zaidi et al.

1 Introduction

The widespread use of ANN models has attracted a lot of interest in their
robustness [1, 2]. Typically, one measure of ANN’s robustness is to see whether
it can maintain performance with the changes in input data. These changes can
be driven by either malicious or benign intent. An example of malicious intent
change is adversarial attacks that manipulate input data to sway the model
output towards a desirable outcome [3]. An example of benign intent change
is data variation over time due to covariate drift. With the ever-changing
facet of adversarial attack methods and datasets drifting over time, how to
add robustness to ANN on tabular datasets remains an open, yet fundamental
question. This work is motivated to address the issue of robustness in ANN

models by proposing new novel layers in standard ANN architecture.
Traditionally, adversarial attacks constitute imperceptible perturbations on

the input image to control ANN’s output. Many studies have demonstrated that
the perturbed images that fail one model can also fail other models trained
on different datasets with different architectures [1], highlighting the severity
of the problem. In the past few years, plenty of research efforts have been
exerted in designing appropriate defence mechanisms for ANN models on image
datasets [2, 4]. However, image datasets are not the only datasets susceptible
to adversarial attacks. Tabular datasets that are commonly used in various
ANN applications domains such as finance and medicine are as vulnerable to
adversarial attacks as image datasets [5]. Tabular datasets have one trait,
i.e., the presence of categorical features that can serve as a natural defence
against adversarial attacks, as the adversarial perturbations on categorical
features can be easily observed. For instance, in a loan approval scenario,
the level-of-education is bachelor, master, and doctorate – (normally
represented as integers like 1, 2, and 3), it is easy for bank managers to find
the fraudulent modification when a customer modifies her education level from
2 to 2.5 or from 3 to 4, to obtain a loan. However, numeric features in tabular
datasets are as vulnerable to adversarial attacks as pixel values in images [5].
Considering the natural defence capability of categorical features, recently,
various discretization-based defence methods have been proposed [6].

Covariate drift which informally refers to the situation where testing dis-
tribution is different from training distribution can also adversely affect ANN

models’ performance [7]. Several studies in domain adaptation and causal
inference aim to tackle the covariate drift issue by taking advantage of the
information on testing distribution [8]. Discretization can serve as a natural
defence against some forms of covariate drifts as well. For example, if the
Salary feature (at the training time) is discretized with equal frequency dis-
cretization into three bins {A, B, C} – even with covariate drift resulting in
the monotonic transformation of the testing data – discretization on the trans-
formed Salary feature (at the testing time) can result in a similar allocation
of the bins.

Given the pivotal role that discretization can play as a defence mechanism
against adversarial attacks and covariate drift, there is a need to integrate

Springer Nature 2021 LATEX template

Zaidi et al. 3

discretization into ANN’s models for increasing their robustness. In this work, we
propose two customized new layers for ANN – named D1-Layer ‘Discretization’)
and D2-Layer (‘Dynamic Discretization’) – collectively called D-Layers, to
address this need. The main motivations of these two layers are:

• Existing discretization-based adversarial attack defence methods [6, 9] nor-
mally discretize data prior to training the model. Despite their effectiveness,
if some part of the training data is changed (e.g., as part of adversarial
training), the discretization results will be incorrect, as the discretization
boundaries are learned beforehand. Furthermore, any time the model is to
be re-trained requires re-discretizing the dataset. The seamless integration
of discretization in ANN (during model training) and exploiting its benefits
is the main motivation for our proposed D-Layers.

• Once the model is trained, there is no way to update the discretization
boundaries. However, if the distribution of testing data is changed due to
covariate drift or adversarial attack, there is a strong need to update dis-
cretization boundaries to accommodate this distribution change. In other
words, we need dynamic discretization at the testing phase to resist poten-
tial distribution changes caused by covariate drift or adversarial attack. The
seamless integration of such dynamic discretization in ANN (during model
testing) is the main motivation for our proposed D2-Layer.

The main contributions of this paper are:

• We have proposed two new layers for adding robustness to ANN mod-
els. Specifically, D1-Layer integrates discretization during the training
phase to improve ANN’s ability to defend against adversarial attacks.
Whereas, D2-Layer integrates discretization during the training phase, as
well as during the testing phase to provide a unified strategy for ANN to
handle covariate drift and adversarial attacks.

• We demonstrate that our proposed D1-Layer lead to the state-of-the-art
(SOTA) defence mechanism against a range of standard attacks on various
publicly available tabular datasets.

• We demonstrate that our proposed D2-Layer offers an effective unified
strategy to address adversarial attacks and covariate drift at the same time.

The rest of this paper is organized as follows. In Section 2, we review the related
works. In Section 3, we present our proposed formulations namely D-Layers.
Section 4 provides an empirical evaluation of our proposed formulations.
In Section 5, we conclude the paper with pointers to future works.

2 Related work

2.1 Adversarial Attack Methods

To highlight the robustness of ANN models, a large number of adversarial attack
models have been proposed in the literature in the past few years. Broadly,
these existing adversarial attack models can be divided into white-box attack

Springer Nature 2021 LATEX template

4 Zaidi et al.

models and black-box attack models [10]. Attack models that require access to
information of the original ANN model such as parameters, gradient, or struc-
ture to conduct attacks are referred to as white-box attack models, otherwise
black-box attack models [11]. Our study focuses on white-box attack models
and hence we will mainly review popular white-box attack models. A more
comprehensive literature review can be found in [11, 12].

FGSM (Fast Gradient Sign Method) [1] is the most classic white-box attack
model for both image and tabular data. It creates adversarial samples by
adding gradients to the original instance. FGSM is easy to implement but nor-
mally has a relatively low success rate, as the adversarial samples created
by adding gradient may be insufficient to cross the decision boundary [4].
A direct extension of FGSM is BIM (Basic Iterative Method) which iteratively
conduct FGSM multiple times with a small step size to achieve better attack
performance [13]. PGD (Projected Gradient Descent) is also a popular white-
box attack model built on top of FGSM [14]. Different from BIM that directly
iteratively conducts FGSM from the original sample, PGD initializes the start
of the adversarial attack from a random distribution to add variations to the
attack to further improve the attack’s success rate.

Another popular white-box attack model is DeepFool [15]. It works by
iteratively linearizing the model to generate unperceivable adversarial exam-
ples. Compared with other gradient-based white-box attack models, DeepFool
is more efficient as it can always generate adversarial examples that are close
to the decision boundary. LowProFool is the state-of-the-art white-box attack
model on tabular data [16]. It induces parameter updates toward the targeted
class by utilizing the gradient of adversarial noise. The importance weights of
features are evaluated to ensure large perturbations only exist on irrelevant or
less important features, such that the generated examples are imperceptible
to expert scrutiny.

2.2 Adversarial Defence Methods

Madry [14] is the most straightforward defence method – it takes advan-
tage of adversarial training to minimize models’ adversarial risk to defend
against adversarial attacks. Despite its effectiveness, one critical issue of
this adversarial-training-based defence model is overfitting to attacks that
generate adversarial samples [2]. E.g., the models that were adversarially
trained to resist FGSM frequently failed to resist L-BFGS and BIM attacks.
Thereby, recent studies have started to advocate input discretization as the
defence mechanism. Thermometer encoding [6] is one of the most popular
discretization-based defence models as it defends against adversarial attacks by
discretizing the numeric inputs to [0, 1] vectors. For example, discretizes 0.23
to [0, 0, 1, 1, 1, 1, 1, 1, 1, 1], 0.34 to [0, 0, 0, 1, 1, 1, 1, 1, 1, 1], etc. Thermometer’s
formulation is very similar to one-hot encoding, but it can preserve the order
of input after discretization, thus having better performance than one-hot
encoding. In the context of deep ANN models implemented via Keras 1, one

1https://keras.io/

Springer Nature 2021 LATEX template

Zaidi et al. 5

can utilize Keras discretization layer 2. It offers another method to discretize
neural network input. It is important to note that unlike other discretization
methods which are feature-based (i.e., different cut-points are learned for dif-
ferent features) – the discretization strategy in this layer learns one set of
cut-points for all the features – i.e., data across all features is used to com-
pute the quantiles – which are later used as the cut-points to discretize. Little
efforts have been made to investigate the effectiveness of keras discretization
layer in defending against adversarial attacks. We will explore this direction
together by proposing two discretization-inspired algorithms in this work.

D2A3 and D2A3N [9] are state-of-the-art defence models on tabular data.
D2A3 defends against adversarial attacks by exploiting both input discretiza-
tion and adversarial training. In D2A3, the numeric input features are
discretized to train a discretized model – this model is then improved by
taking advantage of adversarial training. The main limitation of D2A3 is the
requirement for accessing input data and changing it from numeric to discrete,
which may be impossible in many application scenarios. In D2A3N, the numer-
ical input features are discretized by the cut-points directly learned from the
training data – data close to cut-points are considered adversarial samples and
are replaced by the median of the bin to defend against adversarial attacks.
Although these existing studies demonstrated the effectiveness of input dis-
cretization as a defence mechanism against tabular data adversarial attacks,
their performance can be further improved by integrating flexible within model
cut-points learning strategies as well as dynamic discretization – strategies
that we will study in this work. Note, D2A3 and D2A3N are state-of-the-art
adversarial defence approaches in the context of deep ANN. Therefore, we will
consider these approaches as the baseline when comparing the adversarial
defence capability of the proposed methods in this work. The main advantage
of our proposed D-Layers over D2A3 and its variant is that the defence mech-
anism does not include adversarial training. Secondly, and importantly, our
proposed method integrates discretization in the learning of an ANN model,
unlike a pre-discretization strategy of D2A3. We will discuss in the following,
that this trait is one of the reasons for the superior performance of D-Layers.
One limitation of our proposed approach in handling covariate drift is its inabil-
ity to handle non-monotonic transformations (or drifts). This is because, as
we will also discuss below, D-Layers are based on equal frequency discretiza-
tion, and hence assumes that order is preserved during the drift. However, if
the order is not preserved, our proposed layers will not be effective. We are
working on how to handle non-monotonic drifts as well as concept drift as an
extension of this research.

2.3 Covariate Drift

Covariate drift also known as covariate shift represents a typical model drift
scenario that occurs when the distribution of the testing data is different from
the training data [17]. In covariate drift, the distribution change only lies in the

2https://keras.io/api/layers/preprocessing layers/categorical/discretization/

Springer Nature 2021 LATEX template

6 Zaidi et al.

input features, whilst the labels of testing data remain the same [18]. The case
in which the labels of the testing data change as well is called concept drift [19]
– which is outside the scope of this work. Covariate drift can significantly
compromise the performance of a well-trained ANN, therefore, a bunch of studies
on domain adaptation [20] and transfer learning [21] have been conducted
to address the covariate drift problem through the alignment of training and
testing distributions [22]. E.g., [23] proposed a kernel mean matching-based
method to match the training and testing distributions by reweighting the
training distribution in a reproducing kernel Hilbert space. [24] proposed an
important weighting method for addressing the covariate drift by reweighting
the residuals of kernel mean matching and non-parametric regression. [25]
proposed a strategy that learns the weights required to address covariate shifts
in only one step. [26] proposed a new measurement to measure the distribution
mismatch between training and testing data based on the integrated ratio of
probabilities of balls at a given radius, and demonstrated its effectiveness in
addressing covariate drift in non-parametric regression. The main limitation
of these approaches is the dependence on the prior knowledge of testing data
that is not always available at the training stage [27]. Although some recent
studies on causal inference have tackled this issue by utilizing the stability of
causal graphs [28], the proposed models are complicated due to the difficulty of
capturing causal relations in the data. This paper will show that simple input
discretization can be an effective method to handle some forms of covariate
drift, i.e., monotonic covariate drift.

Covariate and concept drift have been widely studied in machine learning,
however, most of this work aims to develop models that have a built-in mech-
anism to handle either concept or covariate drift, e.g., [29–31]. Our work, in
this paper, is different from various existing works, as we specifically are inter-
ested to address covariate drift in deep ANN models. Therefore, we have not
conducted a comparison with the existing concept or covariate drift method
in this work, as it does not offer a meaningful comparison. We, however, are
interested to do this analysis as part of future works for this research. Note, the
baseline for measuring the effectiveness of our proposed method in handling
covariate drift is a vanilla deep ANN model.

3 Methodology

In this section, we start by formulating the problem of robust ANN, followed by
discussing the motivations for using discretization to improve ANN’s robustness.
Later, we present in detail our proposed D1-Layer and D2-Layer.

3.1 Problem formulation

Definition 1 (Adversarial Attack on Tabular Data.) Let (X,Y) =
{(X1, Y 1), (X2, Y 2), . . . , (Xn, Y n)} be a dataset with n samples, where X is defined
by a set of features j ∈ J, Y = [Y 1, Y 2, . . . , Y n] denotes the corresponding labels.
Let f : RD → Y be the trained ANN model. For a given sample (Xi, Y i) ∈ (X,Y), the

Springer Nature 2021 LATEX template

Zaidi et al. 7

adversarial attack aims to generate an adversarial sample Xi
adv = (Xi+r∗) such that

f(Xi
adv) = Y t ̸= f(Xi) = Y i

s.t. Xi
adv ∈ RD and r∗ = argmin

r
d(r),

(1)

where Y t is the target label, d(r) = ∥r∥p is the perceptibility value that indicates
the quantity of the changes in Xi after adding adversarial perturbation r. r∗ is
perturbation r that achieves minimum d(r).

Definition 2 (Covariate Drift.) For a model f : X → Y covariate drift refers to the
case where Ptrain(Y | X) = Ptest(Y | X), while Ptrain(X) ̸= Ptest(X).

Here, Ptrain(X) is the distribution of the training data (without labels),
Ptest(X) is the distribution of the testing data (without labels), Ptrain(Y | X) is
the conditional distribution of training data, and Ptest(Y | X) is the conditional
distribution of testing data.

Given definition 1 and definition 2, we have the following definition for
robust ANN:

Definition 3 (Robust ANN.) For a model f : X → Y trained on the training dataset
Sdata-train = (X,Y), suppose its performance on the testing dataset Sdata-test is
D%. For a perturbed dataset S̃data-test (based on definitions 1 and 2), f is robust
if its performance on S̃data-test is not less than D% − δ, where δ is a user-specified
confidence interval.

We will make use of this definition to evaluate (and compare) the
effectiveness of our proposed formulations.

3.2 Rationales

Discretization is performed by sorting the data and separating the numeric fea-
tures into different bins according to the learned cut-points (also known as dis-
cretization boundaries) 3. Figure 1 demonstrates the rationale of discretization-
based adversarial attack defence methods. As shown in Figure 1a, in the
original numeric feature space, there is no way to differentiate adversarial
example xadv and other data. However, after discretization, the numeric fea-
tures will be separated into different bins according to specific cut-points
(see Figure 1b). The bin number (e.g., 1, 2, 3, 4) or the median/mean of bin
values will be used to train the ANN models. It can be seen that after dis-
cretization the adversarial example xadv has been scaled back to a value that
is expected by ANN (in our example, they are 1, 2, 3, 4). That means, whatever
the attacker’s intent was, discretization is able to convert adversarial samples
back to the values that have a consistent format with training samples. The

3The cut-points are obtained based on different strategies, such as MDL, Equal Frequency (EF),
etc.

Springer Nature 2021 LATEX template

8 Zaidi et al.

efficacy of this approach depends on the number of discretized values that cross
the bin boundaries. For example, if xadv in Figure 1b moves to the right of
δ3 – its discretized value will be incorrect (see Figure 2a), thereby leading to
performance degradation. Furthermore, as shown in Figure 2b, a small drift of
the data on the x-axis (covariate drift) will result in many data points being
assigned to the wrong bins or even invalid bins. Based on this analysis, the
following observations can be drawn:

1. Pre-discretizing the data is not an effective defence strategy 4, as the pre-
learned cut-points are learned on original data, and are static. Every time
data is modified, we must re-compute the cut-points and re-train the model
(which can be expensive), to make discretization work as a defence strategy.
Note, we are assuming that we have access to some adversarial or drifted
data at the training time. There is a need for cut-points to be adjusted
based on updated data during the training – we will call this dynamic
discretization. Our proposed D-Layers are aimed at incorporating dynamic
discretization for adding robustness to the ANN model.

2. Cut-points should be dynamically updated from the data even during the
testing time. If the data distribution is changed during the testing time (i.e.,
covariate drift), the cut-points should be changed accordingly to accom-
modate the changes to maintain discretization accuracy. Similar to batch
normalization [32], our proposed D2-Layer aims to address this issue by
taking advantage of the statistical information of testing data.

3.3 D1-Layer

Let us start by formulating our problem. Ideally, we are interested in dis-
cretizing an input feature’s numeric value, in an ANN model, i.e., a value say

4Note, D2A3N adopts the strategy of pre-discretization

(a) Adversarial data in numeric feature space.

(b) Adversarial data in discretized space.

Fig. 1: Rationale of discretization-based defence models.

Springer Nature 2021 LATEX template

Zaidi et al. 9

(a) Data change caused by Adversarial Attacks.

(b) Data change caused by covariate drift.

Fig. 2: Illustration of limitations of stationary cut-points in case of adversarial
attack and covariate drift.

23.5 is transformed into value say 3, based on some cut-points – δ1, . . . , δk.
Our problem constitutes learning the cut-points in an end-to-end fashion, such
that the whole process remains differentiable. For this, we have proposed a
novel layer named D1-Layer, that does exactly that. The idea of D1-Layer

is inspired by VQ-VAE (Vector Quantized Variational Auto-Encoder) that dis-
cretizes the encoder’s output via a codebook to improve the quality of image
generation [33]. In D1-Layer, we aim to learn a cut-point space. We denote
this space as – C, also known as the codebook. This codebook will be used to
discretize the input features. E.g., the simplest way to discretize a data point
is by doing a nearest neighbour search in the codebook, i.e., the input data is
represented by the index of the nearest codebook vector.

The salient feature of D1-Layer is that it actually aims to learn the code-
book space which is basically the representation of the cut-points, i.e., the
cut-point δi is actually represented by a D-dimensional vector. The number
of cut-points has to be specified in advance, e.g., if we have K cut-points, we
have C ∈ RK×D. An issue that originates from enforcing the dimensions of the
cut-point to be 1×D, is the dimensionality mismatch between an input data
feature (a scale) and the cut-point representation (a vector of size D). This
renders the comparison between input data feature and codebook vector (or
nearest neighbour search) invalid. D1-Layer utilizes three strategies to address
this dimensionality mismatch 5. Let us discuss these strategies in the following.

5All three forms of representation assume that the input features are normalized by a min-max
scaling.

Springer Nature 2021 LATEX template

10 Zaidi et al.

3.3.1 Duplicate Expansion Search (DES)

The first strategy that D1-Layer employs is to duplicate the scalar value D-
times to convert it into a D-dimensional vector. This is depicted in Figure 3a.
Let Z(·) indicate an operator that takes a scalar value as input and returns
a vector of size D. Formally, for the j-th feature of the data i, the duplicate
expansion search can be defined as:

Z(Xi
j) = [Xi

j , X
i
j , . . . , X

i
j]︸ ︷︷ ︸

D

.

3.3.2 Taylor Series Expansion Search (TSES)

Considering simple duplication may have less variation on the input represen-
tations, D1-Layer also employs a Taylor series expansion of 1

1−Xi
j
to expand

the scalar value (as shown in Figure 3b). Formally, the Taylor series expansion
search can be defined as:

Z(Xi
j) = [Xi

j , (X
i
j +Xi

j

2
), . . . (Xi

j +Xi
j

2
+ . . .+Xi

j

D
)].

For simplicity, we ignored the constant 1 in the Taylor series expansion.
For DES and TSES, after aligning the dimensionality of input features and

codebook, the nearest neighbor search can be defined as:

q(Xi
j) = argmink ∥Z(Xi

j)− Ck∥2. (2)

3.3.3 Direct Cut-point Search (DCS)

Other than expanding our input values to match the size of the cut-point
space, one can also reduce the dimensionality of the cut-point space to match
the input size. As shown in Figure 3c, in DCS, we set the dimensionality of the
cut-point space to 1×K. The discretized value q(Xi

j) can then be determined
as:

q(Xi
j) = argmink ∥Xi

j − Ck∥2. (3)

3.3.4 Learning in D1-Layer

The output of D1-Layer is the discretized data – q(Xi
j), that is passed through

to the next layer for further processing. The forward pass through D1-Layer

can be seen as the clustering of the input feature values – the index of each
cluster center served as the discretized value.

The main challenge in training D1-Layer is that Equations 2 (or 3) is non-
differentiable due to the presence of the argmin operation. Similar to VQ-VAE,
the simple gradient estimator strategy is adopted to address this issue [34].
That is, in the backward pass, gradients of the numeric representations are
approximated by directly copying the gradient of the discretized representa-
tions (see Figure 3). The loss function of our proposed D1-Layer-based ANN

Springer Nature 2021 LATEX template

Zaidi et al. 11

is:

L = Lc(Y
i, Xi) +

|J|∑
j=1

∥sg[Z(Xi
j)]− Ck∥22, (4)

where Lc(Y
i, Xi) represents the standard classification loss such as cross-

entropy, MSE, etc. | J | represents the number of features,
∑|J|

j=1∥sg[q(Xi
j)] −

Ck∥22 represents the codebook learning loss of data Xi, which directs the code-
book embedding Ck toward the corresponding data value. Note, sg[·] is the
stop gradient operator that has zero partial derivatives.

We have summarized the learning process of D1-Layer-based ANN in Algo-
rithm 1. In the training phase, D1-Layer first discretizes the input data of each
mini-batch – we denote discretized data as q(X)b (Algorithm 1, lines 1-12).
Note, we provide algorithm for TSES representation. Discretized data q(X)b is
then used in subsequent layers to train the network with parameters Θ and
codebook C (Algorithm 1, lines 13-20). In the testing phase, the learned code-
book C is used to discretize the input data, which is then fed into the network
parameterized by parameter Θ, for inference (Algorithm 1, lines 21-30).

3.4 D2-Layer

D1-Layer utilizes an objective function of the form of Equation 4 to learn a
representation of the cut-points. A simpler strategy could be to use the statis-
tical information present in each mini-batch of the data and adjust cut-points
accordingly. Our proposed D2-Layer does exactly that. It takes advantage
of the statistical information of each mini-batch to dynamically update the
cut-points (which can be applied at training as well as testing time).

Let B = [X1, · · · ,XB] represent a mini-batch of size B. D2-Layer sorts the
data in each mini-batch and calculates the cut-points using Equal Frequency

(EF) discretization. Other forms of discretization can be used, however, we
argue that EF discretization has desirable properties that can lead to some
robustness in the model.

Let ΦEF(X) represent a discretization function that returns a set of K cut-
points (based on EF discretization), learned on mini-batch X:

ΦEF(X) ∼ [δ1, · · · , δK]. (5)

We have discretized value q(Xi
j) = O(Φ̂(Xi

j)). Here, Φ̂(.) is the function that
applies the learned cut-points ΦEF(X) to the data, and O(.) is the function that
represents the discretized value, e.g., one-hot-encoding, bin-number, etc. The
discretized value q(Xi

j) is then used in subsequent layers of ANN to train the
network. Let us discuss some salient features of D2-Layer:

1. The mean and variance of the output of the D2-Layer are guaranteed to be
stationary and, therefore, the covariate drift can be largely eliminated (in
cases where drift is due to monotonic transformation).

Springer Nature 2021 LATEX template

12 Zaidi et al.

Algorithm 1 D1-Layer embedded ANN

Input: Sdata = (X,Y), length-of-embedding-vector D, number-of-embeddings
K, search-strategy ∈ {DES, TSES, DCS} (default is TSES)

1 /* Sdata is split into Strain and Stest */

2 /* Training starts */

3 Initial parameters: θθθ and C, of the model f : X→ Y
4 for iteration t ⊂ T in training do
5 for b-th mini-batch (X,Y) ∈ Strain do
6 for i-th data in the batch (Xb) do
7 /* Taylor Series Expansion */

8 for j-th feature in the data do

9 Z(Xi
j) = [Xi

j , (X
i
j +Xi

j
2
), . . . (Xi

j +Xi
j
2
+ . . .+Xi

j
D
)]

10 q(Xi
j) = argmink∥Z(Xi

j)− Ck∥2 // Equation 2

11 end

12 end
13 /* Denoting q(X)b, the output of discretized batch b */

14 Forward propagate q(X)b through hidden layers
15 Calculate gradients w.r.t θθθ and C – denoted as ∇θθθ and ∇C
16 /* Update parameters with default Adam optimization */

17 θθθt+1 ← θθθts + η∇θθθ, Ct+1 ← Cts + η∇C
18 end

19 end
20 return f parameterized by θθθ and C
21 /* Testing starts */

22 for i-th data in (X,Y) ∈ Stest do
23 /* Taylor Series Expansion */

24 for j-th feature in the data do

25 Z(Xi
j) = [Xi

j , (X
i
j +Xi

j
2
), . . . (Xi

j +Xi
j
2
+ . . .+Xi

j
D
)]

26 q(Xi
j) = argmink∥Z(Xi

j)− Ck∥2 // Equation 2

27 end
28 Forward propagate q(Xi) through hidden layers
29 return f(q(Xi))

30 end

2. The discretization operator used in D2-Layer is not differentiable, hence,
the gradient-based attacking for original inputXi will not be effective. Thus
providing a defence against many forms of adversarial attacks.

3. D2-Layer can be deployed at the testing time – i.e., the cut-points can be
adjusted based on testing data distribution – making it perfect to address
covariate drift even after the model is trained. Note, one can re-train a
codebook in D1-Layer at testing time, but this might not be effective, as
learning a codebook representation of size K×D requires much larger data
and hence larger size of the batch. On the contrary, D2-Layer makes use

Springer Nature 2021 LATEX template

Zaidi et al. 13

(a) Duplicate expansion search (DES).

(b) Taylor series expansion search (TSES).

(c) Direct cut-points search (DCS).

Fig. 3: Illustration of the discretization in D1-Layer. The numeric input in each
feature is discretized by the codebook. The gradient of discretized feature represen-
tation will be directly copied to the numeric feature representation in the backward
pass (straight-through estimator).

of simpler statistics from the data, which can be obtained from a few test
data points.

We have summarized the learning of the D2-Layer-based ANN at Algorithm 2.

Springer Nature 2021 LATEX template

14 Zaidi et al.

Algorithm 2 D2-Layer embedded ANN

Input: Sdata = (X,Y), bin number m

1 /* Sdata is split into Strain and Stest */

2 /* Training starts */

3 Initial parameters: θθθ, of the model f : X→ Y
4 for iteration t ⊂ T in training do
5 for b-th mini-batch (X,Y) ∈ Strain do
6 /* Learn EF cutpoints on batch b */

7 ΦEF(Xb) ∼ [δ1, · · · , δK]
8 for i-th data in the batch (Xb) do
9 for j-th feature in the data do

10 q(Xi
j) = O(Φ̂(Xi

j)) // Discretization

11 end

12 end
13 /* Denoting q(X)b, the output of discretized batch b */

14 Forward propagate q(X)b through hidden layers
15 Calculate gradients w.r.t θθθ – denoted as ∇θθθ

16 /* Update parameters with default Adam optimization */

17 θθθt+1 ← θθθts + η∇θθθ

18 end

19 end
20 return f parameterized by θθθ
21 /* Testing starts */

22 for b-th mini-batch (X,Y) ∈ Stest do
23 /* Re-Learn EF cutpoints on batch b */

24 ΦEF(Xb) ∼ [δ1, · · · , δK]
25 for i-th data in the batch (Xb) do
26 for j-th feature in the data do

27 q(Xi
j) = O(Φ̂(Xi

j)) // Discretization

28 end

29 end
30 Forward propagate q(Xi) through hidden layers
31 return f(q(Xi))

32 end

In the training phase of D2-Layer, equal frequency discretization is used to
learn the cut-points of each training batch (Algorithm 2, lines 1-12). The dis-
cretized values resulting from the learned cut-points are used to train the entire
network (Algorithm 2, lines 13-20). The selection of feature-specific equal-
frequency discretization is critical to the working of D2-Layer’s algorithm –
i.e., in handling covariate drift, and in warding-off adversarial attack. As we
mentioned earlier, Keras discretization layer also learns cut-points but based

Springer Nature 2021 LATEX template

Zaidi et al. 15

Table 1: Statistic Information of Datasets

Dataset n mn mc Dataset n mn mc

covtype 58101210 44 sign 12546 9 3
census-income 29928535 5 occupancy 10129 14 2
skin-segmentation 2450574 2 satellite 6435 37 6
localization 164860 2 3 page-blocks 5473 11 5
accelerometer 1530014 0 wall-following 5456 25 4
higgs 98050 28 0 waveform-5000 5000 21 0
ipums.la.99 88443 23 38 spambase 4601 58 2
connect-4 67557 43 3 kr-vs-kp 3196 0 36
adult 48842 6 8 sick 3772 6 21
letter-recog 20000 17 26 hypothyroid 3163 6 19
magic 19020 11 2 cmc 1473 2 7
gassensor 13790 128 0 german 1000 3 17

on the quantiles of the whole input data rather than separately for each fea-
ture. We will integrate this quantiles-based discretization strategy in D2-Layer

and compare it with other forms of discretizations later in Section 4.
In the testing phase, different from D1-Layer and other existing defence

methods that use cut-points learned from training data, D2-Layer uses equal
frequency discretization to learn new cut-points from each testing batch to
ensure the cut-points are suitable for testing data (Algorithm 2, lines 21-32).
This dynamic discretization strategy makes sure that D2-Layer can handle
distribution drifts during the testing phase.

4 Experiments

In this section, we start by presenting the details of our experimental settings
followed by the results and detailed analysis.

4.1 Experimental Settings

4.1.1 Datasets

We have used 24 classification datasets from UCI machine learning dataset
repository 6. All of these datasets have more than 1000 samples. Of the con-
sidered datasets, there are 5 datasets with more than 100,000 samples and
are denoted as Large, 9 datasets with between 10,000-100,000 samples and
are denoted as Medium, 10 datasets with between 1,000-10,000 samples and
are denoted as Small. The statistics information of these datasets is shown
in Table 1, where n, mn, and mc represent the number of samples, numeric
features, and categorical features individually.

6https://archive.ics.uci.edu/ml/datasets

https://archive.ics.uci.edu/ml/datasets

Springer Nature 2021 LATEX template

16 Zaidi et al.

4.1.2 Baseline Methods and Evaluation Metric

In terms of adversarial attacks, three of the most commonly used white-box
attack models, namely, FGSM, DeepFool (DPF), and LowProFool (LPF) have
been adopted in our experiments. The parameters of these models are set as
the values suggested in the respective original papers, e.g., the step size of FGSM
is set to 0.1, the maximum iteration of LowProFool and DeepFool is set to 50,
the trade-off factor of LowProFool is set to 10.

For defence, the state-of-the-art tabular data adversarial attack defence
model D2A3N and Madry are selected as the baselines to test D-Layers embed-
ded ANN’s robustness. The ANN model without any defence method (denoted
as Clean) is used as the baseline to demonstrate the severity of the robust-
ness problem. The standard evaluation metric Robust Accuracy is used to
evaluate our proposed D-Layers’ performance in defending against adversar-
ial attacks. Similar to Standard Accuracy that measures the ratio of correct
predictions and total data points, Robust Accuracy measures model’s accu-
racy under unsettled conditions such as attack and covariate drift [9] – the
higher the Robust Accuracy, the more robust the model, and vice-versa.

4.1.3 Implementations

D-Layers and all baselines are implemented with PyTorch. D1-Layer and
D2-Layer are integrated into the first layer of an ANN that has 5 hidden lay-
ers with ReLu activation function and Softmax as the output layer. Each of
the hidden layers has 100 neurons. The training epochs, batch size, and
learning rate is set to 500, 100, and 0.0001 respectively. The number of bins
K is set to 5 for both D1-Layer and D2-Layer. Embedding dimensions – D,
in D1-Layer is set to 10. For the implementation of adversarial attack models,
we use the code released in the original papers, which is available on GitHub 7.
For D2A3N, we implement the Equal Frequency discretization-based version
without adversarial training for fair comparison (i.e., denoted as D2A3N-EF in
the original paper). The parameters of D2A3N and referred attack models are
set to the default values as provided in the paper. All the experiments were
conducted on an i7−10750 desktop PC with 16 GB RAM and single NVIDIA
GeForce GTX 1660 Ti GPU.

4.1.4 Evaluation Scenario

To evaluate the effectiveness of our proposed D-Layers in improving ANN’s
robustness, we split the data into training set and testing set. The testing
data is attacked via three attack methods as presented in Section 4.1.2 or
modified with covariate drift. We will discuss the details of concept drift in
the later section. Nonetheless, we call the data modified testing data. The
proposed D-Layers formulation and other baselines are trained with training
data. The performance of the trained model is evaluated on themodified testing
data. The two-fold cross-validation is adopted for the train-test split, and the

7https://github.com/axa-rev-research/LowProFool

https://github.com/axa-rev-research/LowProFool

Springer Nature 2021 LATEX template

Zaidi et al. 17

average robust accuracy results over five rounds are reported. The evaluation
framework is illustrated in Figure 4.

Fig. 4: The evaluation framework of the experiments.

4.2 Experimental Results

4.2.1 Comparison of D1-Layer Search Strategies

Before comparing the defence performance (robust accuracy) against adver-
sarial attacks of our proposed D-Layers with baselines, we need to determine
the best search strategy for D1-Layer. For this, we compared the perfor-
mance of D1-Layer embedded ANN with three different search strategies, i.e.,
DES, TSES, and DCS. The average robust accuracies are presented in Figure 5 8,
where the results are broken across all, large, medium and small categories of
datasets. Three attack methods of FGSM, LPF and DPF are used. It can be seen
that in most cases TSES has higher robust accuracy than DES and DCS in defend-
ing all baseline attack methods (especially, in face of LPF attack). The pattern
is consistent across Large and Medium datasets. On Small datasets, DCS

performs better than other search strategies. For sake of simplicity, in the
remainder of this paper, we only present D1-Layer results with TSES as rep-
resentative of the three search techniques. The potential of ANN models is
best-achieved with Large datasets. This is because on Medium and Small

datasets, they can overfit the data. Our selection of TSES as representative is
motivated by its extremely good performance of itself on Large collection of
datasets.

4.2.2 Defence Against Adversarial Attacks

Let us now compare the performance of our proposed D-Layers with other
baselines in terms of defending against adversarial attacks. The average robust
accuracies of these methods are shown in Figure 6 9.

8The detailed robust accuracy of D1-Layer under the three search strategies on each dataset is
provided in Table 1 of the appendix.

9The detailed performance of D-Layers and baselines in defending against adversarial attacks
on each dataset is provided in Table 2 of the appendix.

Springer Nature 2021 LATEX template

18 Zaidi et al.

(a) (b)

(c) (d)

Fig. 5: Robust Accuracy comparison of different search strategies for D1-Layer,
under adversarial attacks.

From Figure 6a, we can see that both D1-Layer and D2-Layer demonstrate
higher robust accuracies than baselines on all datasets. This demonstrates
the effectiveness of our proposed D-Layers in defending against adversar-
ial attacks. The average robust accuracies of Clean ANN on all 24 datasets
under FGSM, LPF, and DPF attacks are merely 0.37, 0.24, and 0.26 respectively.
These alarming lower robust accuracies demonstrate that white-box adversar-
ial attacks are quite effective in degrading the performance of ANN models.
The higher average robust accuracy of D2A3N and Madry compared to Clean

ANN demonstrates their effectiveness in defending against adversarial attacks.
It is important to note that D2A3N is the state-of-the-art defence model. Let
us compare the performance of D-Layers with D2A3N and Clean ANN in the
following.

It is encouraging to see that D2-Layer leads to a performance improvement
of 12%, 9%, and 14% on FGSM, LPF, and DPF attacks respectively over D3A3N.
Compared with Clean ANN, the average robust accuracy improvement of
D2-Layer on these three attacks reaches 34%, 48%, and 42% respectively.

Springer Nature 2021 LATEX template

Zaidi et al. 19

(a) (b)

(c) (d)

Fig. 6: Robust Accuracy of D1-layer, D2-layer and baselines under adversarial
attacks.

It can be seen that D1-Layer achieves the highest average robust accuracy
when compared with all other baselines. The average robust accuracy improve-
ment of D1-Layer defence against FGSM, LPF, and DPF attacks compared to
D2A3N reaches 18%, 17%, and 17% respectively; and that robust accuracy
improvement compared to Clean ANN reaches 34%, 48%, and 42% respectively.

From Figure 6b Figure 6c, and Figure 6d, we can see that D1-Layer wins
against all baselines on almost all categories of datasets, the exception is Large
with DPF attack. D2-Layer also shows superior performance on almost all cate-
gories of datasets, exceptions are Medium with FGSM and LPF attacks. Generally,
we can conclude that in most cases D1-Layer and D2-Layer show signifi-
cant performance improvement than all other baselines on Large, Medium, and
Small datasets. Also, D1-Layer has better performance in defending against
adversarial attacks than D2-Layer and of cause other baselines.

Let us now demonstrate the effectiveness of our proposed D-Layers’ robust-
ness by utilizing the robustness definition from Definition 3. In particular, we
summarize the number of times a method’s robust accuracy wins against the
standard accuracy of an ANN by a certain margin – denoted as δ, under LPF

Springer Nature 2021 LATEX template

20 Zaidi et al.

attack in Table 2 10. The results are reported for varying values of δ. It can be
seen that D1-Layer and D2-Layer outperform all other baselines on all values
of δ, with D1-Layer (as we found earlier) is more robust than D2-Layer.

Table 2: Number of Wins of D1-Layer, D2-layer, D2A3N, and Madry with varying
the value of δ.

δ D1-layer Wins D2-layer Wins D2A3N Wins Madry Wins

δ =25% 17 12 8 10
δ =30% 18 13 11 10
δ =35% 19 15 12 10

4.2.3 Handling covariate drift

The typical way of evaluating the covariate drift handling ability of models is
to simulate the drift artificially in the data, then test the models’ performance
on the drifted data [27]. For doing this, we followed the following procedures:

• We split each dataset into training set and testing set (as described in
Section 4.1.4). We will refer to these sets as training data and original test
data respectively, in the following discussions.

• We apply a non-linear transformation to all features (Xi
j = αXi5

j +βXi
j+γ)

on the testing set. The values of α, β, and γ are set to 1, 1, 300 for the
transformation. We call this dataset as drifted test data in the following.

• The D1-Layer, D2-Layer, D2A3N, and Clean ANN are trained on the training
set and tested on the drifted test data.

The average robustness of our proposed D2-Layer and baselines under
monotonic covariate drift are presented in Figure 7 11. We can see
that D2-Layer achieves the highest average robust accuracy (0.89) and wins
against all baselines on Large, Medium, and Small datasets. The average per-
formance improvement of D2-Layer compared to Clean ANN is 29% (which is
quite impressive). This demonstrates the superiority of D2-Layer in handling
monotonic covariate drift. It can be seen that D1-Layer and D2A3N can not
address monotonic covariate drift at all.

To further demonstrate the effectiveness of D2-Layer in handling mono-
tonic covariate drift, we visualize the accuracies of clean ANN and D2-Layer

with and without drift on various datasets in Figure 8. In particular, we plot
the accuracies on modified testing data and testing data. For the sake of com-
pleteness, we also plot the model’s performance during the training as well.
From Figure 8, we can see that during the covariate drift phase, there is a
significant performance degradation of clean ANN (green line). However, the

10Note, we only present results under LPF attack as a representative attack and also as it is the
most powerful form of attack.

11The detailed performance of D-Layers and baselines in handling monotonic covariate drift on
each dataset are provided in Table 3 of the appendix.

Springer Nature 2021 LATEX template

Zaidi et al. 21

Fig. 7: Robust Accuracy of D1-Layer, D2-Layer, D2A3N and ANN under covariate
drift.

performance of the D2-Layer-based ANN model (red line) is maintained, which
clearly demonstrates D2-Layer’s ability in handling covariate drift. The inclu-
sion of training accuracies in the results reveals that D2-Layer has a different
convergence profile as compared to clean ANN.

4.2.4 Selection of Discretization Strategies in D2-Layer

As we discussed in Section 3, D2-Layer can accommodate various discretiza-
tion strategies. So far, in this work, we have constrained D2-Layer with
equal frequency discretization. In this section, we will study the performance
of D2-Layer with two other discretization techniques namely – Equal Width

discretization (denoted as EW) and Quantile-based discretization technique
based on Keras discretization layer (denoted as Quan). Note, Equal Frequency

discretization is denoted as EF in the results. We have not tested the per-
formance of D2-Layer with supervised methods such as MDL discretization,
because, it is not possible to fix the number of bins with MDL discretization.
That is, different batches in the data will lead to different numbers of bins.
The inclusion of MDL discretization in D2-Layer has been left as a future work.

The average robust accuracy of D2-Layer with the three discretization
methods (namely EF – default option in D2-Layer, EW, and Quan) under adver-
sarial attacks and covariate drift is shown in Figure 9 12. We can see that
D2-Layer with EF discretization (D2-EF) achieves better performance than that
with EW discretization (D2-EW) and quantile-based discretization (D2-Quan).

4.2.5 One Strategy for two Problems

Based on the experimental results in Section 4.2.2 and Section 4.2.3, we can
establish that D2-Layer is efficient in terms of providing a defence against
adversarial attacks as well as handling covariate drift. To clearly demonstrate

12The detailed robust accuracy of D2-Layer with the three discretization strategies on each
dataset is provided in Table 4 of the appendix.

Springer Nature 2021 LATEX template

22 Zaidi et al.

Fig. 8: Illustration of accuracy (with and without covariate drift) on various
datasets. Plots show accuracy on the training data (during the training process), fol-
lowed by accuracy of the trained model on the drifted testing data, followed by the
accuracy of the trained model on original testing data.

this property, we plot the performance of D2-Layer under covariate drift and
adversarial attack simultaneously, on two datasets, in Figure 10. It can be seen
that D2-Layer-based ANN has a consistent performance under the three attack
methods and covariate shift. Its performance is consistently maintained within
the ±25% degradation boundaries (shown by orange lines in the figure). In
contrast, there is significant performance degradation in the performance of
the clean ANN model (green line).

5 Conclusions

In this paper, we proposed two ANN layers - D1-Layer and D2-Layer (col-
lectively referred to as D-Layers) to improve the robustness of typical ANN
models on tabular datasets. This is an extension of research focusing on the
use of discretization in improving ANN’s robustness ([9, 35]). The two layers
are motivated by the need of adding discretization within the training of ANN

Springer Nature 2021 LATEX template

Zaidi et al. 23

(a) (b)

(c) (d)

Fig. 9: Robust Accuracy of D2-Layer under different discretization strategies (EF, EW
and Quan).

models and, therefore, learn cut-point for discretizing the input data dur-
ing the training phase. Furthermore, D2-Layer is motivated by the need for
dynamic cut-point adjustment at the testing time. Through empirical evalua-
tions, we demonstrated that D1-Layer and D2-Layer can be easily integrated
into existing ANN models and provides an excellent mechanism for defending
against adversarial attacks and for addressing some forms of covariate drift.
Our experimental results revealed that:

1. D1-Layer leads to state-of-the-art (SOTA) defence performance against
major forms of adversarial attacks on various tabular datasets.

2. D2-Layer leads to an effective strategy to address covariate drift and
adversarial attacks at the same time.

Our future work entails:

• Studying the application of D-Layers to the hidden layers of the network :
This will result in obtaining a discrete ANN and can lead to a network that is
more robust to attacks and covariate drift. However, it can result in signifi-
cant performance degradation. How to maintain a good performance while

Springer Nature 2021 LATEX template

24 Zaidi et al.

Fig. 10: Illustration of the robustness of D2-Layer to adversarial attacks and covari-
ate drift by demonstrating its performance under various forms of attacks as well as
covariate drift. Horizontal orange lines depict δ = 25%. The two models are applied
on testing data, followed by drifted testing data, followed by modified testing data
(due to FGSM, DPF and LPF attacks).

maintaining robustness is a question of great value, and we are currently
investigating this.

• Studying the impact of the nature of input data: That is, how the number of
features, the number of categorial/numerical features, data size, etc. influ-
ence the performance of D-Layers in defending against adversarial attacks
and addressing co-variate shifts.

• Studying the efficacy of D2-Layer for other forms of drift : Currently, the
proposed D2-Layer can only be effective against the monotonic drift in
the data. We are currently exploring the effectiveness of D2-Layer against
non-monotonic transformations as well as concept drifts.

Acknowledgments. The authors would like to thank Mark James Carman

from Politecnico Di Milano, Italy and Jiahui Zhou from the School of Com-
puter Science, Xi’an ShiYou University, for helpful discussions during the
course of this research. The first author of the paper is supported by the
Australian Government Research Training Program (AGRTP) Scholarship.

A Code

The code of D-Layers, as well as the data used in this paper, along with
experimental scripts, is available to be used at: https://github.com/allwenau/
DLayers.

https://github.com/allwenau/DLayers
https://github.com/allwenau/DLayers

Springer Nature 2021 LATEX template

Zaidi et al. 25

B Detailed Results

The detailed results of all the experiments done in this paper can be found in
Tables 3, 4, 5, 6.

Table 3: Robust Accuracy Comparison of Different Search Strategies for D1-Layer.

Datasets
DES TSES DCS

FGSM LPF DPF FGSM LPF DPF FGSM LPF DPF

covtype 0.57 0.58 0.56 0.74 0.65 0.75 0.54 0.52 0.66
census-income 0.97 0.97 0.97 0.96 0.97 0.97 0.95 0.91 0.93
skin-segmentation 0.79 0.79 0.03 0.88 0.81 0.14 0.85 0.84 0.10
localization 0.89 0.89 0.89 0.89 0.89 0.89 0.52 0.39 0.36
accelerometer 0.48 0.48 0.49 0.53 0.48 0.49 0.49 0.53 0.46
higgs 0.54 0.54 0.54 0.51 0.50 0.51 0.53 0.55 0.48
ipums.la.99 0.58 0.58 0.57 0.66 0.92 0.65 0.89 0.95 0.65
connect-4 0.73 0.73 0.73 0.72 0.73 0.70 0.53 0.70 0.82
adult 0.76 0.76 0.76 0.77 0.79 0.79 0.69 0.76 0.66
letter-recog 0.49 0.49 0.49 0.55 0.60 0.50 0.17 0.36 0.33
magic 0.63 0.63 0.63 0.67 0.57 0.75 0.58 0.71 0.78
gassensor 0.52 0.52 0.52 0.72 0.75 0.84 0.78 0.86 0.88
sign 0.57 0.57 0.57 0.39 0.49 0.61 0.38 0.56 0.29
occupancy 0.94 0.94 0.94 0.98 0.95 0.95 1.00 0.89 0.89
satellite 0.57 0.57 0.57 0.84 0.81 0.97 0.67 0.63 0.92
page-blocks 0.91 0.91 0.91 0.92 0.92 0.92 0.91 0.90 0.91
wall-following 0.75 0.75 0.75 0.77 0.70 0.78 0.74 0.70 0.82
spambase 0.48 0.54 0.53 0.56 0.72 0.47 0.44 0.66 0.46
waveform-5000 0.56 0.56 0.56 0.56 0.56 0.56 0.61 0.32 0.60
kr-vs-kp 0.49 0.49 0.49 0.22 0.31 0.15 0.97 0.49 0.90
sick 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
hypothyroid 0.95 0.95 0.94 0.95 0.95 0.94 0.95 0.95 0.94
cmc 0.63 0.63 0.63 0.63 0.63 0.61 0.63 0.63 0.63
german 0.68 0.68 0.68 0.56 0.62 0.44 0.68 0.69 0.63

Average (All) 0.68 0.69 0.65 0.71 0.72 0.68 0.69 0.69 0.67
Average (Large) 0.74 0.74 0.59 0.80 0.76 0.65 0.67 0.64 0.50
Average (Medium) 0.64 0.64 0.64 0.66 0.70 0.70 0.62 0.71 0.64
Average (Small) 0.70 0.70 0.70 0.70 0.72 0.68 0.76 0.69 0.78

References

[1] Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

[2] Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial machine learning
at scale. In: 5th International Conference on Learning Representations,
ICLR 2017 - Conference Track Proceedings (2017). Cited By :374

Springer Nature 2021 LATEX template

26 Zaidi et al.

Table 4: Robust Accuracy of D1-layer, D2-layer and Baselines Under Adversarial
Attacks. The last column of the table presents ANN’s accuracy without attacks on
each dataset, i.e., standard accuracy of each dataset.

Datasets
D1-layer D2-layer D2A3N Madry Clean ANN ANN

FGSM LPF DPF FGSM LPF DPF FGSM LPF DPF FGSM LPF DPF FGSM LPF DPF Std Acc

covtype 0.74 0.65 0.75 0.46 0.40 0.58 0.57 0.64 0.57 0.58 0.58 0.42 0.35 0.37 0.07 0.93
census-income 0.96 0.97 0.95 0.95 0.87 0.97 0.96 0.97 0.96 0.96 0.96 0.96 0.48 0.20 0.05 0.97
skin-segmentation 0.88 0.81 0.14 0.90 0.81 0.79 0.83 0.90 0.09 0.83 0.80 0.04 0.78 0.78 0.28 0.99
localization 0.89 0.89 0.89 0.87 0.78 0.84 0.58 0.41 0.52 0.64 0.42 0.50 0.45 0.49 0.42 0.86
accelerometer 0.53 0.48 0.49 0.51 0.53 0.50 0.54 0.52 0.55 0.54 0.46 0.48 0.51 0.46 0.35 0.64
higgs 0.51 0.50 0.51 0.44 0.58 0.49 0.48 0.47 0.43 0.53 0.51 0.54 0.39 0.34 0.36 0.68
ipums.la.99 0.66 0.92 0.65 0.98 0.97 0.58 0.57 0.78 0.57 0.92 0.92 0.54 0.68 0.12 0.02 1.00
connect-4 0.72 0.73 0.70 0.52 0.52 0.54 0.27 0.46 0.33 0.38 0.47 0.61 0.18 0.15 0.31 0.83
adult 0.77 0.79 0.79 0.66 0.59 0.59 0.48 0.39 0.33 0.69 0.64 0.66 0.29 0.34 0.35 0.80
letter-recog 0.55 0.60 0.50 0.51 0.07 0.53 0.17 0.01 0.22 0.16 0.01 0.38 0.12 0.01 0.03 0.99
magic 0.67 0.57 0.75 0.49 0.57 0.57 0.27 0.21 0.36 0.39 0.19 0.61 0.19 0.12 0.15 0.85
gassensor 0.72 0.75 0.84 0.62 0.42 0.78 0.59 0.48 0.66 0.33 0.05 0.34 0.32 0.00 0.01 0.99
sign 0.39 0.49 0.61 0.31 0.81 0.45 0.25 0.32 0.28 0.25 0.25 0.25 0.23 0.23 0.21 0.82
occupancy 0.98 0.95 0.95 0.92 0.94 0.83 0.99 0.90 0.98 1.00 1.00 0.98 0.69 0.13 0.32 1.00
satellite 0.84 0.81 0.97 0.75 0.81 0.94 0.75 0.26 0.93 0.73 0.39 0.97 0.45 0.08 0.24 0.98
page-blocks 0.92 0.92 0.92 0.62 0.74 0.61 0.13 0.68 0.27 0.04 0.02 0.37 0.04 0.02 0.40 0.98
wall-following 0.77 0.70 0.78 0.60 0.54 0.75 0.48 0.61 0.64 0.35 0.50 0.45 0.25 0.16 0.19 0.98
waveform-5000 0.56 0.72 0.47 0.54 0.55 0.44 0.34 0.51 0.32 0.29 0.06 0.21 0.22 0.06 0.07 0.91
spambase 0.56 0.56 0.56 0.24 0.18 0.56 0.10 0.48 0.10 0.10 0.17 0.12 0.09 0.09 0.56 0.94
kr-vs-kp 0.22 0.31 0.15 0.51 0.47 0.51 0.23 0.25 0.20 0.74 0.40 0.47 0.42 0.03 0.04 0.95
sick 0.96 0.96 0.96 0.94 0.96 0.96 0.88 0.90 0.77 0.45 0.54 0.30 0.42 0.38 0.45 0.92
hypothyroid 0.95 0.95 0.94 0.93 0.90 0.92 0.95 0.84 0.94 0.95 0.95 0.94 0.36 0.55 0.57 0.98
cmc 0.63 0.63 0.61 0.53 0.59 0.53 0.65 0.67 0.68 0.64 0.60 0.61 0.47 0.39 0.36 0.70
german 0.56 0.62 0.44 0.69 0.68 0.69 0.61 0.64 0.53 0.69 0.67 0.41 0.50 0.29 0.31 0.71

Average (All) 0.71 0.72 0.68 0.65 0.64 0.66 0.53 0.55 0.51 0.55 0.48 0.51 0.37 0.24 0.26 0.89

Average (Large) 0.80 0.76 0.65 0.74 0.68 0.74 0.70 0.69 0.54 0.71 0.64 0.48 0.51 0.46 0.23 0.88
Average (Medium) 0.66 0.70 0.70 0.61 0.61 0.60 0.45 0.45 0.46 0.70 0.63 0.50 0.34 0.16 0.20 0.88
Average (Small) 0.70 0.72 0.68 0.64 0.64 0.69 0.51 0.58 0.54 0.50 0.43 0.48 0.32 0.21 0.32 0.91

[3] Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in
computer vision: A survey. Ieee Access 6, 14410–14430 (2018)

[4] Shafahi, A., Najibi, M., Ghiasi, A., Xu, Z., Dickerson, J., Studer, C.,
Davis, L.S., Taylor, G., Goldstein, T.: Adversarial training for free! In:
Advances in Neural Information Processing Systems, vol. 32 (2019). Cited
By :92

[5] Cartella, F., Anunciação, O., Funabiki, Y., Yamaguchi, D., Akishita, T.,
Elshocht, O.: Adversarial attacks for tabular data: application to fraud
detection and imbalanced data. In: CEUR Workshop Proceedings, vol.
2808 (2021)

[6] Buckman, J., Roy, A., Raffel, C., Goodfellow, I.: Thermometer encoding:
One hot way to resist adversarial examples. In: International Conference
on Learning Representations (2018)

[7] Nado, Z., Padhy, S., Sculley, D., D’Amour, A., Lakshminarayanan, B.,
Snoek, J.: Evaluating prediction-time batch normalization for robustness
under covariate shift. arXiv preprint arXiv:2006.10963 (2020)

[8] Magliacane, S., van Ommen, T., Claassen, T., Bongers, S., Versteeg,
P., Mooij, J.M.: Domain adaptation by using causal inference to pre-
dict invariant conditional distributions. arXiv preprint arXiv:1707.06422
(2017)

Springer Nature 2021 LATEX template

Zaidi et al. 27

Table 5: Robust Accuracy of D1-Layer, D2-Layer, D2A3N and Clean ANN Under
covariate drift.

Datasets D1-Layer D2-Layer D2A3N Clean ANN

covtype 0.43 0.87 0.43 0.57
census-income 0.29 0.90 0.94 0.38
skin-segmentation 0.79 0.97 0.94 0.79
localization 0.81 0.96 0.50 0.81
accelerometer 0.31 0.86 0.21 0.39
higgs 0.72 0.89 0.92 0.72
ipums.la.99 0.70 0.91 0.47 0.70
connect-4 0.70 0.89 0.58 0.65
adult 0.66 0.89 0.73 0.61
letter-recog 0.66 0.89 0.24 0.61
magic 0.65 0.89 0.47 0.60
gassensor 0.65 0.89 0.65 0.60
sign 0.65 0.89 0.47 0.60
occupancy 0.29 0.90 0.50 0.38
satellite 0.65 0.89 0.48 0.60
page-blocks 0.65 0.89 0.93 0.60
wall-following 0.65 0.89 0.72 0.60
spambase 0.65 0.89 0.51 0.60
waveform-5000 0.65 0.89 0.59 0.60
kr-vs-kp 0.65 0.89 0.51 0.60
sick 0.65 0.89 0.06 0.60
hypothyroid 0.65 0.89 0.05 0.61
cmc 0.65 0.89 0.64 0.61
german 0.65 0.89 0.70 0.61

Average (ALL) 0.61 0.89 0.54 0.60

Average (Large) 0.62 0.91 0.55 0.64
Average (Medium) 0.62 0.89 0.56 0.61
Average (Small) 0.64 0.89 0.54 0.58

[9] Zhou, J., Zaidi, N., Zhang, Y., Li, G.: Discretization inspired defence
algorithm against adversarial attacks on tabular data. In: Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pp. 367–379
(2022). Springer

[10] Kumová, V., Pilát, M.: Beating white-box defenses with black-box
attacks. In: 2021 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8 (2021). IEEE

[11] Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu,
M., Yi, X.: A survey of safety and trustworthiness of deep neural networks:
Verification, testing, adversarial attack and defence, and interpretability.
Computer Science Review 37, 100270 (2020)

[12] Kong, Z., Xue, J., Wang, Y., Huang, L., Niu, Z., Li, F.: A survey on adver-
sarial attack in the age of artificial intelligence. Wireless Communications
and Mobile Computing 2021 (2021)

[13] Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial machine learning at

Springer Nature 2021 LATEX template

28 Zaidi et al.

Table 6: Robust Accuracy of D2-layer with Different Discretiztaion Strategy Under
Adversarial Attacks or Covariate Shift.

Datasets
D2-EF D2-EW D2-Quan

FGSM LPF DPF Co-shift FGSM LPF DPF Co-shift FGSM LPF DPF Co-shift

covtype 0.46 0.40 0.58 0.87 0.37 0.44 0.58 0.75 0.55 0.48 0.55 0.72
census-income 0.95 0.87 0.97 0.90 0.87 0.74 0.03 0.82 0.93 0.46 0.87 0.80
skin-segmentation 0.90 0.81 0.79 0.97 0.89 0.82 0.79 0.84 0.83 0.80 0.79 0.84
localization 0.87 0.78 0.84 0.94 0.88 0.82 0.89 0.85 0.64 0.40 0.53 0.84
accelerometer 0.51 0.53 0.50 0.86 0.55 0.51 0.48 0.82 0.50 0.49 0.49 0.82
higgs 0.44 0.58 0.49 0.89 0.47 0.52 0.49 0.80 0.43 0.47 0.44 0.80
ipums.la.99 0.98 0.97 0.58 0.91 0.95 0.93 0.42 0.81 0.90 0.95 0.58 0.81
connect-4 0.52 0.52 0.54 0.89 0.76 0.63 0.74 0.81 0.53 0.48 0.50 0.81
adult 0.66 0.59 0.59 0.89 0.76 0.56 0.62 0.81 0.73 0.45 0.45 0.81
letter-recog 0.51 0.07 0.53 0.89 0.39 0.05 0.48 0.81 0.13 0.01 0.25 0.81
magic 0.49 0.57 0.57 0.89 0.49 0.41 0.59 0.81 0.32 0.33 0.48 0.81
gassensor 0.62 0.42 0.78 0.89 0.30 0.46 0.52 0.81 0.41 0.38 0.63 0.81
sign 0.31 0.81 0.45 0.89 0.41 0.40 0.51 0.81 0.28 0.33 0.49 0.81
occupancy 0.92 0.94 0.83 0.90 0.99 0.05 0.28 0.81 0.88 0.16 0.04 0.81
satellite 0.75 0.81 0.94 0.89 0.69 0.59 0.95 0.81 0.53 0.58 0.94 0.81
page-blocks 0.62 0.74 0.61 0.89 0.41 0.84 0.55 0.81 0.12 0.19 0.07 0.81
wall-following 0.60 0.54 0.75 0.89 0.75 0.72 0.75 0.81 0.53 0.66 0.66 0.81
waveform-5000 0.54 0.55 0.44 0.89 0.42 0.31 0.48 0.81 0.34 0.25 0.36 0.81
spambase 0.24 0.18 0.56 0.89 0.10 0.20 0.56 0.81 0.10 0.15 0.08 0.81
kr-vs-kp 0.51 0.47 0.51 0.89 0.95 0.62 0.67 0.81 0.11 0.18 0.02 0.81
sick 0.94 0.96 0.96 0.89 0.93 0.93 0.78 0.81 0.70 0.85 0.62 0.81
hypothyroid 0.93 0.90 0.92 0.89 0.87 0.76 0.95 0.81 0.42 0.92 0.21 0.81
cmc 0.53 0.59 0.53 0.89 0.64 0.56 0.58 0.81 0.62 0.54 0.58 0.81
german 0.69 0.68 0.69 0.89 0.68 0.72 0.56 0.81 0.63 0.66 0.46 0.81

Average (All) 0.65 0.64 0.66 0.89 0.65 0.57 0.59 0.81 0.51 0.47 0.46 0.81

Average (Large) 0.74 0.68 0.74 0.91 0.71 0.67 0.55 0.82 0.69 0.53 0.65 0.80
Average (Medium) 0.61 0.61 0.60 0.89 0.61 0.45 0.52 0.81 0.51 0.40 0.43 0.81
Average (Small) 0.64 0.64 0.69 0.89 0.64 0.63 0.68 0.81 0.41 0.50 0.40 0.81

scale. arXiv preprint arXiv:1611.01236 (2016)

[14] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards
deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083 (2017)

[15] Moosavi-Dezfooli, S.-M., Fawzi, A., Frossard, P.: Deepfool: a simple and
accurate method to fool deep neural networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2574–2582
(2016)

[16] Ballet, V., Renard, X., Aigrain, J., Laugel, T., Frossard, P., Detyniecki,
M.: Imperceptible adversarial attacks on tabular data. arXiv preprint
arXiv:1911.03274 (2019)

[17] Sugiyama, M., Krauledat, M., Müller, K.-R.: Covariate shift adaptation
by importance weighted cross validation. Journal of Machine Learning
Research 8(5) (2007)

[18] Bickel, S., Brückner, M., Scheffer, T.: Discriminative learning under
covariate shift. Journal of Machine Learning Research 10(9) (2009)

[19] Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A

Springer Nature 2021 LATEX template

Zaidi et al. 29

survey on concept drift adaptation. ACM computing surveys (CSUR)
46(4), 1–37 (2014)

[20] Chen, M., Zhao, S., Liu, H., Cai, D.: Adversarial-learned loss for domain
adaptation. In: Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 34, pp. 3521–3528 (2020)

[21] Wang, B., Qiu, M., Wang, X., Li, Y., Gong, Y., Zeng, X., Huang, J.,
Zheng, B., Cai, D., Zhou, J.: A minimax game for instance based selective
transfer learning. In: Proceedings of the 25th ACM SIGKDD (2019)

[22] Wilson, G., Cook, D.J.: A survey of unsupervised deep domain adapta-
tion. ACM Transactions on Intelligent Systems and Technology (TIST)
(2020)

[23] Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K.,
Schölkopf, B.: Covariate shift by kernel mean matching. Dataset shift in
machine learning 3(4), 5 (2009)

[24] Li, F., Lam, H., Prusty, S.: Robust importance weighting for covariate
shift. In: International Conference on Artificial Intelligence and Statistics,
pp. 352–362 (2020). PMLR

[25] Zhang, T., Yamane, I., Lu, N., Sugiyama, M.: A one-step approach to
covariate shift adaptation. In: Asian Conference on Machine Learning, pp.
65–80 (2020). PMLR

[26] Pathak, R., Ma, C., Wainwright, M.: A new similarity measure for covari-
ate shift with applications to nonparametric regression. In: International
Conference on Machine Learning, pp. 17517–17530 (2022). PMLR

[27] Nair, N.G., Satpathy, P., Christopher, J., et al.: Covariate shift: A review
and analysis on classifiers. In: 2019 Global Conference for Advancement
in Technology (GCAT), pp. 1–6 (2019). IEEE

[28] Yu, Z., Wang, P., Xu, J., Xie, L., Jin, Z., Huang, J., He, X., Cai, D.,
Hua, X.-S.: Stable learning via causality-based feature rectification. CoRR
(2020)

[29] Pfahringer, B., Holmes, G., Kirkby, R.: New options for Hoeffding trees.
In: AI 2007: Advances in Artificial Intelligence vol. 4830, pp. 90–99 (2007).
Springer

[30] Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In:
Advances in Intelligent Data Analysis VIII, pp. 249–260 (2009). Springer

Springer Nature 2021 LATEX template

30 Zaidi et al.

[31] Oza, N., Russell, S.: Online bagging and boosting. In: Artificial Intelli-
gence and Statistics 2001, pp. 105–112 (2001). Morgan Kaufmann

[32] Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In: International Conference
on Machine Learning (2015). PMLR

[33] Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation
learning. Advances in neural information processing systems 30 (2017)

[34] Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gra-
dients through stochastic neurons for conditional computation. arXiv
preprint arXiv:1308.3432 (2013)

[35] Zhou, J., Zaidi, N., Zhang, Y., Montague, P., Kim, J., Li, G.: Leveraging
generative models for combating adversarial attacks on tabular datasets.
In: Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pp. 147–158 (2023). Springer

	Introduction
	Related work
	Adversarial Attack Methods
	Adversarial Defence Methods
	Covariate Drift

	Methodology
	Problem formulation
	Rationales
	D1-Layer
	Duplicate Expansion Search (DES)
	Taylor Series Expansion Search (TSES)
	Direct Cut-point Search (DCS)
	Learning in D1-Layer

	D2-Layer

	Experiments
	Experimental Settings
	Datasets
	Baseline Methods and Evaluation Metric
	Implementations
	Evaluation Scenario

	Experimental Results
	Comparison of D1-Layer Search Strategies
	Defence Against Adversarial Attacks
	Handling covariate drift
	Selection of Discretization Strategies in D2-Layer
	One Strategy for two Problems

	Conclusions
	Acknowledgments

	Code
	Detailed Results

